p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.88D4, C23.9Q16, (C2×C8).54D4, C2.16(C8⋊2D4), (C22×C4).161D4, C23.931(C2×D4), C22.61(C2×Q16), C22.4Q16⋊30C2, C4.55(C4.4D4), C4.19(C42⋊2C2), C2.16(C8.18D4), C22.123(C4○D8), (C23×C4).276C22, (C22×C8).116C22, C23.7Q8.21C2, C22.252(C4⋊D4), C22.151(C8⋊C22), (C22×C4).1465C23, C2.8(C23.48D4), C2.11(C23.11D4), C2.11(C23.19D4), C4.111(C22.D4), C22.121(C22.D4), (C2×C2.D8)⋊11C2, (C2×C4).1374(C2×D4), (C2×C22⋊C8).29C2, (C2×C4).627(C4○D4), (C2×C4⋊C4).150C22, SmallGroup(128,808)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.88D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=db=bd, eae-1=ab=ba, ac=ca, ad=da, faf-1=abc, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de3 >
Subgroups: 288 in 128 conjugacy classes, 48 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C22.4Q16, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×C2.D8, C24.88D4
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C2×Q16, C4○D8, C8⋊C22, C23.11D4, C8.18D4, C8⋊2D4, C23.19D4, C23.48D4, C24.88D4
(2 24)(4 18)(6 20)(8 22)(9 58)(10 33)(11 60)(12 35)(13 62)(14 37)(15 64)(16 39)(26 50)(28 52)(30 54)(32 56)(34 44)(36 46)(38 48)(40 42)(41 57)(43 59)(45 61)(47 63)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 42)(10 43)(11 44)(12 45)(13 46)(14 47)(15 48)(16 41)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 13 19 42)(2 12 20 41)(3 11 21 48)(4 10 22 47)(5 9 23 46)(6 16 24 45)(7 15 17 44)(8 14 18 43)(25 60 53 38)(26 59 54 37)(27 58 55 36)(28 57 56 35)(29 64 49 34)(30 63 50 33)(31 62 51 40)(32 61 52 39)
G:=sub<Sym(64)| (2,24)(4,18)(6,20)(8,22)(9,58)(10,33)(11,60)(12,35)(13,62)(14,37)(15,64)(16,39)(26,50)(28,52)(30,54)(32,56)(34,44)(36,46)(38,48)(40,42)(41,57)(43,59)(45,61)(47,63), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,13,19,42)(2,12,20,41)(3,11,21,48)(4,10,22,47)(5,9,23,46)(6,16,24,45)(7,15,17,44)(8,14,18,43)(25,60,53,38)(26,59,54,37)(27,58,55,36)(28,57,56,35)(29,64,49,34)(30,63,50,33)(31,62,51,40)(32,61,52,39)>;
G:=Group( (2,24)(4,18)(6,20)(8,22)(9,58)(10,33)(11,60)(12,35)(13,62)(14,37)(15,64)(16,39)(26,50)(28,52)(30,54)(32,56)(34,44)(36,46)(38,48)(40,42)(41,57)(43,59)(45,61)(47,63), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,13,19,42)(2,12,20,41)(3,11,21,48)(4,10,22,47)(5,9,23,46)(6,16,24,45)(7,15,17,44)(8,14,18,43)(25,60,53,38)(26,59,54,37)(27,58,55,36)(28,57,56,35)(29,64,49,34)(30,63,50,33)(31,62,51,40)(32,61,52,39) );
G=PermutationGroup([[(2,24),(4,18),(6,20),(8,22),(9,58),(10,33),(11,60),(12,35),(13,62),(14,37),(15,64),(16,39),(26,50),(28,52),(30,54),(32,56),(34,44),(36,46),(38,48),(40,42),(41,57),(43,59),(45,61),(47,63)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,42),(10,43),(11,44),(12,45),(13,46),(14,47),(15,48),(16,41),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58)], [(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,13,19,42),(2,12,20,41),(3,11,21,48),(4,10,22,47),(5,9,23,46),(6,16,24,45),(7,15,17,44),(8,14,18,43),(25,60,53,38),(26,59,54,37),(27,58,55,36),(28,57,56,35),(29,64,49,34),(30,63,50,33),(31,62,51,40),(32,61,52,39)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | Q16 | C4○D8 | C8⋊C22 |
kernel | C24.88D4 | C22.4Q16 | C23.7Q8 | C2×C22⋊C8 | C2×C2.D8 | C2×C8 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 10 | 4 | 4 | 2 |
Matrix representation of C24.88D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 15 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
15 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 6 | 15 |
0 | 8 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 15 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 8 |
0 | 0 | 0 | 0 | 11 | 9 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,15,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[15,0,0,0,0,0,0,8,0,0,0,0,0,0,2,0,0,0,0,0,0,9,0,0,0,0,0,0,2,6,0,0,0,0,2,15],[0,2,0,0,0,0,8,0,0,0,0,0,0,0,0,15,0,0,0,0,9,0,0,0,0,0,0,0,8,11,0,0,0,0,8,9] >;
C24.88D4 in GAP, Magma, Sage, TeX
C_2^4._{88}D_4
% in TeX
G:=Group("C2^4.88D4");
// GroupNames label
G:=SmallGroup(128,808);
// by ID
G=gap.SmallGroup(128,808);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,422,387,394,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=d*b=b*d,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^3>;
// generators/relations